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Introduction to Waves

Chapter Overview

introduction :
Maxwell’s crowning achievernent was his discovery that his equations altowed for the
possibility of waves moving through an electromagnetic field. In chapter E16 we will ex

plore the nature of these wave-like solutions of Maxwell’s equations. When we talk

about “electromagnetic waves,” though, we are really constructing an analogy to n
chanical waves (such as water waves) with which we have more experience, The pu
pose of fhis chapter is, therefore, to discuss how we can describe such waves physically
and mathematically, so that we can better appreciate the analogy. B

Section £15.1: What is a Wave?

In general, a wave is 4 disturbance that moves through a medium while the medium remain
essentially af rest. Examples include water waves, sound waves, tension waves on a'v
brating string or spring, seismic waves, and “the wave” at a stadium. S
In this chapter, we will focus primarily on mechanical waves, where the distd
bance involves some kind of physical displacement of the medium. Almost all such
waves can be classified as being either transverse or longitudinal, which involve dis-
placements of the medium that are perpendicular to or parallel to the wave motion respec-
tively. Such mechanical waves can carry energy from place to place. -

Section F15.2: A Sinusoidal Wave

Fourier's theorem states that a wave of any shape can be treated as a superposition of
sinusoidal waves. Therefore, if we fully understand how sinusoidal waves behave ina
given situation, we essentially understand how any wave would behave.

In this unit, we will consider only one-dimensional waves, waves whose distur
bance function f{r,x) depends on time and only one spatial coordinate. The equations g
describing a one-dimensional sinusoidal wave and is associated quantities are '

1" Purpose: These equations describe an idealized, one-dimensional sinusoi-.
- dal wave that varies with time f and position x along the x axis. -0

o Symbols: f{i.x) quantifies the “disturbance” the wave represents atpointx-
 attime £, A is the wave's amplitude, k (not the Coulomb k) its wavenumber; A
' its wavelength, o its angular frequency, T its period, and fits frequency (don't
- confuise this with the disturbance function). © S A
St - Limitations: This isan _ideéi_iz_é_iﬁ_bﬁ of a real wave,
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The value of the disturbance oscillates from +4 to A, where A is the wave's amplitude.
The wavenumber k expresses (in radians per meter) how rapidly the wave oscillates
with increasing position at a given instant. It is telated to the wavelength 1, which
specifies the distance between wave crests at a given instant. The angular frequency @
specifies (in radians per second) how rapidly the wave oscillates with increasing time at
. a given position. It is related to the frequency f of the wave (the number of complete os-
- cillations per unit time at a given position), and the wave's period T {(which is the time -
required for a complete oscillation at a given position).

 Section E15.3: The Phase Velocily of a Wave

Another important feature of the sinusoidal wave f(1,x) = Asin(kx- 1) is that its
shape moves to the right as time passes. Many of the waves we encounter in nature are
traveling waves of this type. In this section, we see that a given crest of a sinusoidal
wave moves in the +x direction with a phase speed v of

(A wave’s phase velocity T specifies the direction as well as the rate of the motion.}
Section E15.4; The Wave Equation

One of the most important equations in physics is the wave equation:

A medium where disturbances obey this wave equation has a number of nice prop-
erties: (1) the medium supports sinusoidal traveling waves, (2) it obeys the principle of
superposition, and (3) waves of arbitrary shape preserve their shape as they move.

This section explores examples of several kinds of wave-carrying media and show
that they do obey the wave equation. We will also see why the wave equation implies
the existence of fraveling waves.,

We will find this equation every useful in chapter E16.
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There are many kinds of
waves in the natural world

Chapter £E15 Introduction to Waves

15.1  What Is a Wave?

Drop a pebble in a still pond; the splash of the pebble creates a series of
centric ripples that move out from the disturbance at a sedate and consta
pace. When these ripples arrive at the location of a small object floating
pond (such as a leaf or small stick) some distance away, they cause the obje
bob up and down. The fact that the object bobs up and down instead of b
swept in the direction of the wave’s motion indicates that the pond water.
carries the wave does not substantially move along with the wave. The wa
move through the medium of the water: while the water itself is disturbed b
the passing wave and moves slightly in response to it, there is no net displa
ment of the water in the direction of the wave. 3

A wave in general can be described as being a disturbance that moves thron
a medium while the medium remains basically at rest, at least compared to the'y
locity of the wave. Examples of such waves in nature are abundant: wati
waves (from tiny ripples to tsunamis), sound waves (ranging from tiny w
pers to explosion shock waves), tension waves on a vibrating string or spii
seismic waves that radiate through the Earth’s crust from an earthquake, ;
so on. Figure E15.1 shows some physical waves.

Figure E15.1

Various examples of waves. (a) Water waves from a boat moving through still water. (b) A Schlieren photograph of
the shock waves in the air surrounding a supersonic jet. {c) A Hubble photograph of the Cartweei Galaxy. A head-
on coflision with anather galaxy has caused a circular shock wave to move radially outward through the galaxy’s
gas. The wave compresses the gas, causing a burst of star formation just behind the wave’s leading edge




_ E15.1 What s a Wave?

The list given above by no means exhausts the kinds of waves that occur
in nature. A crowd doing “The wave” in a stadium provides a good example
of a disturbance that moves through a medium (in this case, the human be-
ings involved the wave) without a net motion of the medium in the direction
of the wave’s motion. If you observe a traffic jam from a helicopter, you can
 sometimes see waves of disturbance radiate through obstructed traffic at
speeds much higher than any of the individual cars are moving. Recently, as-
trophysicists have discovered that star formation in galaxies often moves in
waves away from some disturbance in the galaxy’s structure (say as the re-
sult of a collision with another galaxy). The growth of cells in a Petri dish can
sometimes proceed in waves. The list goes on and on.

Indeed, waves occur so commenly in the physical world and in such a
wide variety of coniexts that a general study of wave behavior is an indis-
pensable part of a physicist's education. Studying wave behavior in this
course would be worthwhile in and of itself even if we weren’t using it here
as a stepping stone for the study of electromagnetic waves.

While waves of star formation or biological growth are definitely “dis-
turbances in a medium”, we will focus in the next few sections on mechani-
cal waves, where the disturbance involves some kind of physical displacement
* of the medium. Almost all such waves can be classified as being either trans-
verse or longitudinal waves. A transverse wave causes the medium to dis-
place in a direction perpendicular to the direction of the wave motion. A ripple
generated on a rope by a sideways flick of the wrist or “The Wave” in a sta-
dium are examples of transverse waves. A longitudinal wave causes the me-
dium to move back and forth parallel to the direction that the wave is mov-
ing. Sound waves (which are waves of compression and rarification in air)
and/or “car waves” in a traffic jam are examples of longitudinal waves.
Transverse and longitudinal waves are illustrated in figure E15.2.

Water waves are somewhat peculiar in that as a wave passes, a given
“piece” of water actually moves in a small vertical circle around its rest posi-
tion (see Figure E15.3). Those of you who have played in the surf at a beach
know that in front of a wave crest, water moves backwards toward the wave
and upward as the crest approaches, but after it has passed the water moves
forward with the wave and downward. Thus water waves exhibit both longi-
tudinal and transverse motions (though the net displacement of the water af-
ter the wave has passed is still zero). Most mechanical waves, though, are ei-
ther clearly longitudinal or clearly transverse.

One of the most important features of mechanical waves is that they
- catry not only information that a disturbance has occwrred but also energy
away from the disturbance. For example, the water waves moving away

Waves carry energy

@
Figure E15.2

{a) A transverse wave moving along a stretched spring. As the wave passes, each element of the
spring is displaced perpendicular to the wave's motion, (b) A longitudinal wave on a sfretched
spring. As the wave passes, each element of the spring is displaced paralle! to the wave's motion.
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Why sinusoidal waves are
worth studying

Fourier’s theorem: any wave
= a sum of sinusoidal waves

The general mathematical
representation of a wave

Chapter E15 Introduction to Waves

Wave motion -

Trough

Figure E15.3
This diagram illustrates how partscies on the surface of a body of water go around in
nearly circular paths as a water wave passes.

from a splash can cause a distant floating bottle to bob up and down as the
waves pass; the waves thus transfer energy from the splash and convert it
kinetic energy in the bobbing bottle.

Self-Test E15X.1

An earthquake occurs when part of the earth’s crust suddenly slips relative to
its surroundings. Such an event radiates energy in the form of two differen
types of seismic waves in the crust of the earth. P waves cause the crust to osc
late back and forth toward and away from the earthquake epicenter. 5 wave
cause the crust to oscillate up and down. Which of these types is a transvers
wave? Which is a longitudinal wave?

Self-Test E15X.2

Describe some evidence that seismic waves carry energy.

i 2 A Sinusoidal Wave

A sinusoidal wave is a special kind of wave that is especially easy to describe
mathematically. Realistic waves are often approximately sinusoidal, so a sinusoi-
dal wave represents a convenient simplified model of such waves. But si-
nusoidal waves are important for another reason. A mathematical theorem:
called Fourier’s theorem that states that any wave, no matter how complicate
in shape or behavior, can be treated as a superposition of sinusoidal wave
This means that if we fully understand how sinusoidal waves behave in a gwen _
situation, we essentially understand how any wave would behave. :

Fourier’s theorem is an exiremely important and useful theorem which’
you will certainly encounter more than once if you proceed in the study of:
physics and/ or engineering. Its proof, unfortunately, is somewhat beyond our
means and would be tangential to our purposes in any case. It is sufficient for
our purposes at present for you to understand that not only do sinusoidal -
waves represent a good approximation to many kinds of real waves, but they
actually represent the key to understanding all kinds of waves. ;

We can represent any wave mathematically by describing a function
flt.x,y,z) that quantifies the disturbance of the medium at every position in
space at every instant of time. In this text, I am essentially going to ignore the y
and z coordinates and focus on waves that depend on x and t alone: we can
pretty much learn everything we need to know about wave behavior from
such one-dimensional waves without the added complexity of dealing with
the i and z coordinates.

A one-dimensional sinusoidal wave has the simple mathematical form
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Figure E15.4
A graph of a sinusoidal wave as a function of x at time t = 0. In this case, k = 2m/(4 cm) = 1.57 cm~.

Fl,x) = Asin(kx— 1) {E15.1) A sinusoidal wave

where f{t,x) quantifies the disturbance of the medium at time + and position x,
and A, k, and @ are constants. (Please do not confuse k in this context with the k
that we have previously encountered as the Coulomb constant.) What does this
sinusoidal wave look like?

We can take a “snapshot” of this wave at time { = 0 by setting f = Oinequa- A “snapshot” of the wave
tion E15.1 and drawing a graph of how the disturbance f(x) depends on x at  helps us define its amplitude,
this time. Such a graph is shown in Figure E15.4. Notice how the wave looks  wavelength, and wavenumber
like an undulating sequence of hills and valleys (cailed crests and troughs). We
can see also that the wave disturbance value oscillates between +A and —A. The
quantity A, which is called the amplitade of the wave, thus characterizes the
maximum strength of the disturbance.

The distance between two adjacent crests in such a graph is called the
wavelength 4 of the sinusoidal wave This wavelength is related to the constant
k as follows. The first crest of the wave to the right of x = 0 occurs where
kx, = /2, as you can see from Figure E15.4. The next crest happens when kx,
= 5rt/2 = 2m + /2. The distance between these crests is thus:

A= xx = E[.@WEJ - (E15.2)

You can think of the quantity k as expressing the number of radians-worth
of oscillation the wave goes through in a unit distance:
2n _ radians/cycle radians

= (E15.3)

o= 2=
A distance/cycle distance

This quantity is called the wavenumber of the wave.

Now let us consider what happens to the wave in time as we watch it from A wave's behavior at a fixed
a particular place, say, x = 0. A graph of the sinusoidal wave as a function of  position defines its period, fre-
time at x = 0 is shown in Figure E15.5. Note that we see the wave move up and quency, and angular frequency
down between +A and —A as time passes.

The period of the wave T is defined to be the time between adjacent crests.
By analogy to how we determined the wavelength, you can show that the pe-
riod is related to o as follows

T = — (E15.4)

- Self-Test E15X.3
. Verify equation E15.4
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Figure E15.5
A graph of a sinusoidal wave as a function of { at position x = 0. In this case, o= 20/{0.4 )=
1%.7 (radians) per second.

The quantity w can be thought of as expressing the number of radians-worth'o
oscillation that the wave moves through per unit time:

@ = 2rm  radiansicycle  radians
T time/cycle time

The constant o is called the phase rate (see chapter N11) or more commo
the angular frequency of the oscillation. _

The ordinary frequency of the oscillation f (in cycles per second, or Hz)’
defined to be equal to 1/ T:

cycles i 1 w

second seconds/cycle T oom

[Note that the fhere is not related to the function f{t,x) considered earlier.]

Self-Test E15X .4

If a sinusoidal water wave has a wavelength of 2.0 em and a frequency of
2.0 Hz, what are the values (with appropriate units) of the waves’ wavenumber
k and angular frequency w?

So in summary, here is the constellation of equations that describe a one-di-
mensional sinusoidal wave:

A summary of the one-
dimensional sinusoidal
wave formula and associ-
ated quantities

s Purpuse. '.These equahons desc:rzbe an, ideahzed one dnnensxon
: .._smuscndal wave that varies with time  and position x aiong the x axis.
. Symbols: f(tx) quantlhes the “disturbance” the wave represents at.
- pomt x at time f, A is the wave's amphtude, (riot the Coulomb kty-it
. wavenumber, 1 its wavelength; w its angular frequency, T its period
L -_ahd fits frequency (don’t confuse this with the disturbance funcﬁon) '
G leitahons. Thxs is an 1deallzat10n of a reai wave. R
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53  The Phase Velocity of a Wave

Features (such as crests) of a

The wave f(t,x) = Asin(kx— @) has one other important feature: if moves as traveling wave move at a rate
time progresses. Figure E15.6 shows successive snapshots of such a wave at e cail the phase velocity
various different times. You can see in this diagram that a given crest of the )
wave progresses to the right as time passes. We call a wave whose basic spatial
shape is translated in space like this as time passes a traveling wave: most of
the waves we encounter in nature are traveling waves.

Why does the sinusoidal wave given by f(t,x) = Asin{kx — wt) move like
this? Consider a given crest of the wave, say, the first crest to the right of x =0

Figure E15.6
A successive series of snapshots of a sinuscidal wave (read from the bottom up!). Note how the crest that was
originally at x = 1 cm moves to the right as time passes.




278

Definition of the phase
velocity of a sinusoidal wave

Chapter £E15 introduction to Waves

at time t = 0. This particular crest is the place where the argument of the sin
(the quantity in the parentheses that the sine function operates on) has th
value 1/ 2 (the first positive angle where sine becomes +1). So for all time, the
location x.q of this particular crest is specified by the condition that

g" = KXo — OF (E15

sides of equation E15.9, we {ind that

dx dx w i
0 = kh—<B8l g 2w erest o 4 E15.1
dr dr k ( .

This crest thus moves in the +x direction with speed w/k.

Self-Test E15X.5

Show that the crest corresponding to the place where the argument of the Sin
is 51/2 moves with the same velocity.

The velocity of a given feature (like a given crest) of a traveling wave is
called the wave's phase velocity (don’t confuse this with the wave’s phase rate
w). We see that our sinusoidal travehng wave has a phase velocity in the +x d
rection whose magnitude (the wave’s phase speed) is

v = |Z’1l = +% {phase speed of our sinusoidal wave) (EISJ]I}_

This equation, in combination with equations E15.8, implies the following re
tionships between the phase speed and the wave’s wavelength, period, and fr

quency:

: Puxpnse* Thls equatmn descrlbes how we can calculate a siridisoit
'-j Wave s phase speed v from information about its angular velocity @, its
u wavenumber k, its. wavelength A, its period T and/or its frequency £,
=5 leztatlons' Thls expressmn applles only to smusmdal Eravehng-
-:waves SR - SR

We can understand v = Af more intuitively as follows. Consider figure E15.5,
and imagine that we sit at the position x = 11/2 and waich the sine wave pa
by. At time £ = 0, there was a crest at this position. After time T has passed, the
wave goes through one complete oscillation at our position, so there is again a
crest passing our position. Meanwhile, the original crest has moved exactly one
wavelength 4 ahead in space. The speed of this crest is thus indeed I/T, as
claimed by equation E15.12. .
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Problem The sound wave from a flute playing the A above middle C has a fre-
quency of 440 Hz. If sound waves move at a speed of 340 m/s in air at 20°C,
what is the approximate wavelength of this wave (assuming it is sinusoidal)?

Solution According to equation E15.12, we have:

g o b dMomiEr 18R L g9 m=77em, (E15.13)
7 = 440 Hz \ 1 cycle/s

Seif-Test E15X.6

Seismic P-waves radiating from an earthquake travel at a speed of very
roughly 6 km/s near the Earth’s surface. If such waves for a given earthquake
have a period of (.25, what is their wavelength?

The Wave Equation

One of the most important equations in physics is the wave equation:

The wave equation

rpose; It this equation (where b is a co of t
. nd») accasately desetibes the behavior of a disturbance £, in a
 mectium, that medium will support traveling waves.

ZLimitations: This equation applies only to cases where the distur-

‘bance depends only on one spatial coordinate x -
Jote: | The partial derivative: symbols remind us that when we
. ovaluate the derivative of 7(1,x) with respect to one of |

% we treat the other variable as if it were a constan

r.

This equation appears again and again in all areas of physics: it accurately de-

scribes mechanical disturbances of a stretched string or spring, pressure or

density disturbances in solids, liquids, and gases, plasma oscillations in the

ionosphere, electrical disturbances in a coaxial cable, , some kinds of quantum-

mechanical wave functions, and so on and so on. Physicists rapidly learn to

recognize this equation as the basic indicator that traveling sinusoidal distur-

bance waves are possible in the medium in question.

Let us show that our sinusoidal traveling wave fit,x)y = Asin(kx - 1) is A proof that our sinusoidal

indeed a solution of this equation. If we take the derivative of f(t,x) withre- traveling waveisa solution of

spect to x (while treating # as constant), we find that the chain rule tells us that the wave equation
8_f = —a-sin(kx-ma)r) = Acos(kx—«mt)ﬁ—(kxwmt)
dx gx ox

= Acos(ke —wt)(k) = kAcos(kx~ 1) {E15.15)
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The relationship between the
wave speed and the constant
b in the wave equation

How the wave equation
emerges from basic physics in
the context of a taut string

Chapter E15 introduction to Waves

If we take the derivative again, we get

gi«f« = kAwa——cos(kxwa)z) = —kAsintke ~ wt) (E15.16;
ax* dx Y

In a similar way, you can show that

2 R
9L P Asin(e - o) (E15.17).

Self-Test E15X.7
Verify that equation E15.17 is correct.

Plugging these results into the left side of equation E15.14, we get

> 2
b "; S _g L~ _ peo? Asin(h - oty + K2 A sin(hr ~ ot)
T x

|

il

This will satisfy the wave equation as long as &* —bw® =0 . We see that a me:"
dium obeying the wave equation can indeed support traveling waves as long’

as the relationship between the values of & and @ for those waves is such that
k% = bew?, where b is whatever constant appearing in the wave equation.

What will be the phase speed of these waves? Equation E5.11 tells us that’

the phase speed of the wave is v=w/k. This means that valid sinusoidal
traveling-wave solutions to the wave equation will all move at the speed

()] w 1

RPN N

independent of their wavelength or frequency. Therefore, the value of the con-
stant b appearing in a given medium’s wave equation uniquely determines the phase.
speed of waves moving through that medium. This is a very important conclusion.

One can in fact show (see problem E155.4) that an arbitrary sum of sinusoii'
dal traveling waves also satisfies this equation (as long as & = bw? for each o

wave in the sum, i.e. each wave moves at speed v = p1? ). Since the Fourier
theorem tells us that any arbitarily shaped traveling wave can be written as a
sum of sinusoidal traveling waves, this means that any traveling wave will sat-
isfy the wave equation as long as it moves with phase speed v = [6]/2 .

How would we know whether this equation “accurately describes the be-

havior of a disturbance” in a given medium? Let's see how this works by con~
v

sidering the special case of a transverse wave on a stretched string.

Problem Imagine that we place a string under tension by exerting a tension
force of magnitude Fr on its ends. Assume that the string has a mass per unit
length of t. Show that small transverse disturbances on this string obey the
wave equation and determine the phase speed v of traveling waves on this
string.

(k2 — b )Asin(kx -~ o) (E15.18)

(E15.19)2'
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Figure E15.7

(a) We can model a stretched string as being a sequence of particles with mass m con-
necled by springs. The diagram shows the string in its equifibrium state. (b) This diagram
shows a possible set of vertically disturbed positions for the ith particle and its nearest
neighbors. {c) This diagram displays the forces that are exerted on the ith particle by the
springs connecting it to its nearest neighbors.

Translation and Model We will model the string as being a series of particles
of mass m connected by identical springs, as shown in figure E15.7a. (We can
eventually take the limit that the distance Ax between the masses goes to zero
to better model a continuous string.} In our model, saying that the tension on
the string has a magnitude of Fr means that each spring is stretched sutfi-
ciently so that each of its ends exerts a force of magnitude F on the mass to
which that end is connected.

Figure E15.7a shows the string in its “undisturbed” configuration, where
the string is straight and each mass is at rest on the x axis. We consider the
string’s ith mass (the one at position x; } to be “disturbed” if it is displaced ver-
tically away from the x axis to a nonzero y coordinate y;. A listing of the y co-
ordinates y,(1,x;) for all the masses on the string at a given time ¢ completely
describes the wave on that string at that time. In this case, therefore, y;{t,x;)
corresponds to the disturbance function we more generally described earlier as
being f(t,x) .

How will the masses respond to being disturbed? Figure E15.7b shows
some of the masses in a disturbed configuration. The forces acting on the ith
mass in this case are the leftward and rightward tension forces Fr and Fpg
shown in figure E15.7c. Newton's second law for that mass therefore reads

FTL,I + FTR,x ”‘“FTL COSGL + };:”{ COSBR
miii = ﬁnet,i = FTL,y + FTR,y = "FTL it QL + FTR sin 9R (E].SZO)
Frp o+ Frm 0

At this point, | am going to make an approximation. During a realistic os-
cillation, the angle that any part of the string makes with the horizontal direc-
tion is going to be very small (imagine, for example, a vibrating guitar string: it
remains almost straight even as it vibrates, right?). Indeed, 1 have greatly exag-
gerated the string’s curvature in figure E15.7 just to make the angles visible at
‘all. In this “small oscillation” limit, no individual spring will be stretched much
more or less than the general stretching that gives the string its tension Fr.
Therefore, the magnitude of the force that each individual spring exerts will be
essentially equal to Fy . Moreover, in this small oscillation limit, the angles 6
and 8y are small. This means that cos8; ~cosfg =1, so the x component of
the net force on the ith mass is (Fye ), = Fry, €038y — Fgcosbg = Fp —Fp =0 . 1t
is therefore an good approximation in this limit to assume that the x-position of
any mass on this string is essentially fixed.
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In the small angle limit, we also have sin8; ~tan8; and sin@; =~tan6y . |

we take the angles to be positive when measured counterclockwise from the 3
direction, then

Yim¥i1 . Ay

Ax Ax

sing; = tanf;

Yiel 7Y _ Byg

SiﬂGR = tan@R = Ax A
X

where Ax is the horizontal distance between masses, y; is the vertical p081t10n
of the ith mass, y;.; is the same for the adjacent mass to the left, ., is the
same for the adjacent mass to the right, Ay, =y ~y_;, and Ayg =y, ~ ;.1
we plug this back into equation E15.20, we see that the only significant compo-
nent of the ith mass” acceleration is the y component, whose value is

(Frei) Frr. . Er{vigi =Y Y-y
a4, = NELULA R —im[smGRmSlnﬂL] = ZT Yirdl 7Y YT dic

m Ax Ax
FTAX[}__[MR Ay ﬂ
mo | Ax\ Ax Ax

Now, let us look at the quantity in square brackets in this expression in the
limit that the spacing Ax between masses becomes very small. In that limit,
¥ (£, x;) will become a continuous function y(z,x). Now, Ayg /Ax descri
the string’s slope for the step just to the right of the ith mass: this ratio best a
proximates the derivative dy/dx of the contmuous function at a point halfway
between the ith and (i+1)th mass, i.e, at x=x; +1 5 LAx. Similarly, Ay; /Ax d
scribes the string’s slope for the step just left of the ith mass and best approy
mates dy/dx at x=x; - L Ax. Therefore, in the limit that Ax -0,

i i(AyR ~ AyL] - (dyldx)y s axrn — (dyldx), _pxr
ax—0| Ax\ Ax Ax Ar—0 Ax

2

=22 (evaluated at position x; and time f)
ax? P

If

since this amounts to the definition of the derivative of the derivative of y wzth
respect to x. By the definition of acceleration, we also have

@,y = a’r = 8:5 {evaluated at position x; and time t) (E15.23b)

Finally, in this same limit

I/ o
—_—= = it length i 15.24);
AIXHEG . 4 = mass per unit length on the string (E15.24)

Solution Plugging these results back into equation E15.22, we therefore have,’
in the limit that Ax— 0, .

2 2 2 2
MHMQ_% = a—z w0 o= AL ﬂmi—— (E15.25a)
Fr ot dx Fr 3 ax? .

This has the same mathematical form as the wave equation [considering that-
our disturbance function is y(x,1) instead of f(x,7}] with = F /u. We can
thus conclude that traveling-wave solutions are possible for transverse distur-
bances on a stretched string and such waves will move with the phase speed



Et5.4 The Wave Equation

Fr
1

(E15.25b)

Foaluation This result makes good intuitive sense: experience with stretched
strings suggest that that the speed of waves on the string would increase if we
increase the string tension and/or decrease the string’s density.

Self-Test E15X.8

Show that Fy /u has the units of a squared speed, and calculate the speed of
transverse waves on a string whose mass per unit lengthis 2.0 g/m and whose
tension force is 100 N (roughly 22 bs).
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Example E15.2 illustrates how basic physical principles applied to a seg-
ment of a stretched string leads directly to the wave equation (in the small-os-
cillation limit, at least). One finds that the same kind of thing happensina vari-
ety of media (particularly in the small-oscillation limit): this equation is a very
common outcome of such analyses! (See the problems for other examples.)

The wave equation is a powerful and useful mathematical tool, but it is
somewhat abstract. How can we recognize more intuitively when a medium
can support travelning waves? Also, we have seen that sinusoidal traveling
waves are a solution to the wave equation, but must waves travel in media that
obey the wave equation? If so, why? The answers to these questions are linked.

At its most fundamental level, the wave equation links the acceleration
3*#/0¢* of a medium’s displacement at a point to the curvature 3%f19x% of the
displacement in that point’s neighborhood. Useful mnemonics might be that
“the tow is equal to the bow” or “the kick is equal to the kink.” The point is
that a medium whose elements interact in a way that seeks to flatten out any
disturbance (attempting to testore the graph of the disturbance to a straight
line) qualitatively satisfies the wave equation, and it strictly satisfies the wave
equation if the restoring force applied on an element of the medium is exactly
proportional to how far it is out of line.

A simple example of such a medium is the torsion-rod wave machine
shown in figure E15.8. The medium in this case consists of transverse rods con-
nected to a longitudinal wire spine. The spine in this case strongly twists each
rod in direct proportion to the degree to which that rod is out of line with its

Figure E15.8 A torsion rod wave machine.
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Figure £E15.9

Disturbing the mass element at position x;_; creates a
kink in the disturbance af position x; that accelerates the
mass element there. But this creates a kink at position
x;,1 that accelerates the mass element there, and so on.

ChapterE£15 Iintroduction to Waves

neighbors, and the spine also twists the rod in a direction that will bring it
more in line. Similarly, figure E15.7 on page 281 shows that a mass element on
a stretched string only experiences a net force if it is out of the line defined by
its nearest neighbors. So a medium obeying the wave equation is easily reco,
nized by its tendency to flatten out any disturbance.

Why do disturbances in such a medium move? Imagine that we are given
stretched string in equilibrium (with all mass elements horizontal and at regt)
and we suddenly displace the (i-1)th mass element, as shown in figure E1
In that figure, note that this creates a kink in the slope of the displacements'ii
the neighborhood of the ith mass element. By the wave equation, this element
will therefore be accelerated upward to try to move this element into the lin
defined by its neighbors. But its motion upward then creates a kink in the slo
at the (i+1)th element, which then accelerates upward, and so on. You can see
how this progression causes a disturbance wave to move outward from the
tial disturbance. b

Moreover, the speed at which this disturbance wave moves depends -
tirely on how rapidly the out-of-line mass element is accelerated: the bigger th
acceleration, the more rapidly each mass element will respond to a kink in th
disturbance, and the more rapidly the next element will see a kink developin
and 50 on. Indeed, if we rewrite the wave equation as follows '

aZf aZf a?.f 1 azf o
0o=p2L 2L L LS Z7 E15.2
ot ax? at b oaxt ¢

you can easily see that the constant of proportionality that expresses how larg
an acceleraﬁon 0 fiar? is caused by a given disturbance curvature 9°f/3x"
simply 1/b=1v" . This supports the line of reasoning just giver: the stronger th
acceleration caused by a given disturbance curvature, the more rapidly dxstur
bance waves will move through the medium.

55 The Mystery du Jour

We are finally in a position to appreciate fully one of the most profound.
and important consequences of our dynamic electromagnetic field equations:
the existence of electromagnetic waves that are able to move through spac
carrying energy from point to point. We now understand what mechani
traveling waves are like, how to describe them mathematically, and how to ¥
ognize media that support traveling waves. But what are electromagnet]
waves? In what medium would such travel? What corresponds to “displac
ments” of that medium? What are the physical effects that seek to restore that
medium to flatness? These are the questions that we will resolve in the CrOWT
ing chapter of this unit.



286

Chapter E15

Introduction to Waves

HOMEWORK PROBLEMS

Basic Skills

E15B.1

E15B.2

E15B.3

E15B.4

E15B.5

E15B.6

E15B.7

Displacement, mm

Sound waves move through air at a speed of about
340 m/s. Compute the wavelength of the following
sound waves:

{a) anorgan pipe playing middle C (260 Hz)

(b) the highest audible pitch (= 20,000 Hz)

(c) the lowest audible pitch (=15 Hz)

In the next chapter, we will find out that electro-
magnetic waves move at the speed of light. What
are the wavelengths of the following kinds of elec-
tromagnetic waves?

(a) radio waves on the AM band (= 1000 kHz)

(b) radio waves on the FM band (= 100 MHz)

(c) EM waves in a microwave oven (= 30 GHz)

Sound waves move through air at a speed of about
340 m/s. What would be the frequency of a sound
wave that has a wavelength of 1 m? 1inch? 1 mm?

Visible light has wavelengths between 700 nm and
about 400 nm. If light really is an electromagnetic
wave, then what are the corresponding frequencies
of these waves?

A sinusoidal traveling water wave has a wave-
length of 25 cm and a frequency of 0.60 Hz. What
are k and w for this wave? What is the phase speed
of this wave?

A sinusoidal wave moving down a taut rope has a
wavelength of 2.0 m and a period of about 0.5 s.
What are k and w for this wave? What is the phase
speed of the wave?

Consider the sinusoidal traveling wave shown be-
low (this is a snapshot at a certain instant of time).
Assume the wave travels at 1.0 m/s.

(a) What is the wave’s amplitude?

(b) What is its wavenumber k?

(c) What is its angular velocity w?

(d) What is its period?

(e) What is its frequency?

[

oy
]

o

I
[
T

I
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]

Synthetic

E155.1

E155.2

E155.3

E155.4

E155.5

E15S.6

Sinusoidal water waves are created 120 km offshore
by an earthquake near a small island. Observers in
helicopters above the island report that the waves
have an amplitude of about 2.0 m, a wavelength of
15 m, and a frequency of about 0.5 Hz. How long
do lifeguards on the mainland have to evacuate
beaches before the waves arrive?

magine that a geologist is measuring the waves
produced by small earthquakes using two seismo-
graphs, one 12 km from the volcano, and another 17
km from the volcano. During one earthquake, the
waves feel like the gentle rocking of a boat at a fre-
quency of about 1.5 Hz and an amplitude of about 1
cm. The geologist later notices that the closer seis-
mograph registered the waves about 0.85 s sooner
than the other. What was the approximate wave-
length of the waves during this episode?

Consider the function f(x,t) = Asin(kx+f). Does this
function describe a traveling sinusoidal wave? If
not, why not? If so, what is the speed (in terms of w
and k) and the direction of motion of this wave?
Does this wave satisfy the wave equation? Explain
your responses carefully.

Argue that if f(r,x) and g(s,x) separately satisfy
the wave equation for a given medium, then
h(t,x)= f(1,x)+g(t,x) also satisfies the wave equa-
tion. (By extension, any sum of sinusoidal waves
will satisfy the wave equation.)

By rocking a boat, a person produces water waves
on a previously undisturbed lake. This person ob-
serves that the boat oscillates 12 times in 20 s, each
oscillation producing a wave crest 5 cm above the
undisturbed level of the lake, and that the waves
reach the shore (12 m away) in about 6 s. At any
given instant of time, about how many wave crests
are there between the boat and the shore?

Consider a series of identical masses m arranged
along the x axis that are connected by identical
springs with spring-constant k, . The masses are all
free to slide in the +x direction on a frictionless sur-
face. Assume that when all the masses are in their
equilibrium positions, their centers are equal dis-
tances Ax apart and the springs between them are
all relaxed. Let’s define the position x; of the ith
mass (when all masses are in equilibrium) to be its
“home” position. We can then define the “distur-




Homework Problems

bance” s; of the ith mass at a given time to be its

horizontal displacement from its home position,

wheres; is positive if the mass is displaced in the
+x direction from home, and negative if it is dis-
placed in the —x direction from home.

(a) Make a careful drawing of the mass at a given
arbitrary position x and its two adjacent neigh-
bors and argue that the x component of the net
force on the mass at a given instant of time is

F,=k,Asg—k,As; (E15.29)

where Asg=s5,,-s5 describes how much
larger the distance between the mass at x; and
the mass to the right is than the usual separa-
tion Ax, and As; =s,—s,_, is the same for
distance to the left of that mass. (A positive
value of Asg or As; means that the spring be-
tween the masses is stretched; a negative value
means that it is compressed.)

(b} Argue (using the definition of the double de-
rivative) that if Ax is reasonably small,

1 95
—|Asp—As; | = — (E15.30)
sz [ R L] ax;)_
where in the last step, we are imagining s(x,1)
to be a smooth function that matches the value
of s5; at each home position x;.

(c) Use this to argue that

s

F, =k Ax?
X ax2

(E15.31)

(d) Show that Newton’s second law and the previ-
ous results together imply that longtitudinal
disturbances in this set of interconnected
masses obey the wave equation

75 o

L
ot ox?

(E15.32)

and find the wave speed v in terms of &, , m,
and Ax. (This means that disturbances in this
system will move like traveling waves up and
down the x axis. If we consider the masses to
be atoms and the springs to be interatomic
bonds, this could represent a simplified model
of a one-dimensional elemental solid.)

E155.7 Figure E15.8 on page 303 shows a torsional wave

machine of a type commonly used for classroom
demonstrations of traveling waves. The wave ma-
chine consists of rods of length L and mass m sepa-
rated by distance Ax along a wire spine. The distur-
bance function in this case is the angle 6(,x) that
the rod at position x makes with the horizontal
plane at time f. When a segment of the spine of
length Ax is twisted through a small angle A8, the

E155.8
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segment exerts a torque on the rod at each end
whose magnitude is

1:=ka—8

E15.33
e ( )

where £, is a constant expressing the spine’s stiff-

ness (a kind of a spring constant for twisting). As-

sume that the x axis is along the spine and the posi-

tive direction of that axis is toward the right.

(a) Argue that the x component of the net torque
on the rod at x; is

Thetxe = k.f (A BR —iA 91_ ) (E1534)

where A =6(x;,)-6(x;) is the angle that the
rod to the right of x; is twisted relative to the
angle of the rod at x;, and A8; =6(x;)-8(x;_,)
is the angle that the rod at x; is twisted relative
to the next rod to the left. (Conventionally,
counterclockwise angles are positive and clock-
wise angles are negative.)

(b) Argue (using the definition of the double de-
rivative) that if the distance Ax between adja-
cent rods is reasonably small,

%0

= (E15.35)
X

1
—5|ABp —AB
Ax? [ K .
(c) As we saw in unit C, the definition of torque is
To =dLIdt, L= %Mch?) for a long, thin rod
of mass m and length L, and @=d#/d: . Use
this information to argue that the rightward
component of the torque on the rod is related
to its angle according to the expression
%0

Tl]‘[ X os
et

(E15.36)

and find the constant of proportionality.

(d) Link equation E15.34 and E15.36 to show that
an angular disturbance on this medium obeys
the wave equation and to determine the speed
of disturbance waves in terms of m, [, and &,

Consider a series of identical disk-shaped magnets
strung along like beads along a thin rod. The mag-
nets are able to slide frictionlessly along the rod,
and are oriented so that each magnet repels both its
nearest neighbors. Assume that when all the mag-
nets are at rest at their equilibrium positions, their
centers are equal distances Ax apart. Let’s define the
position x; of the ith magnet (when all the magnets
are in this equilibrium state) to be its “home” posi-
tion,. We can then define the “disturbance” s; for
the ith magnet at a given time to be its horizontal
displacement from its home position, wheres, is
positive if the magnet is displaced in the +x direc-
tion from home, and negative if it is displaced in
the —x direction. The magnets all have mass m, and

—__4
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ANSWERS TO SELF-TESTS
F15X.1 P-waves are longitudinal, S-waves transverse. E15X.7 The first derivative of f = Asin{kx -t} is
d d . d

E15X.2 Earthquake waves shake objects, which means that gjt: = A asm(kx ~@t) = Acos(ky - @1 )a(kx - W)

the waves must have given the objects kinetic en- _ .

ergy. This energy ultimately comes from the sud- = ~wAcos(kx— o) (E15.43)

den relaxation of strains in rock due to the slippage Taking the derivative again, we get

along a fault at the epicenter. This energy may be )

carried many miles from the epicenter by the wave. 5;_{ = —wA éa}' cos(kx~ 1)

!

E15X.3 The first crest to pass x = 0 after t = 0 is when —w1, ‘ 3

= -3n/2 [since sin(-3n/2) = +1]. The next crest =+ mAsm{kxwmr)g(kxwwt)

passes when ~wr = -7rf2 Thus T = ¢~y = )

“2nt/ (- = 2n/ @, as claimed, = — " Asin(kx - @1) (E15.44)
F15X.4 k=314/cmand w=1257/s E15X.8 We can do both parts at once here:

P

E15X5 (The calculation is essentially identical with what oo [Fr 1000 (1 kemis? [10003' }

we did before except that we now substitute 5r/2 I 20g/m| 1N 1 kg

everywhere that we had n/2 before.)

2
m

EI5X.6 Solving equation E15.12 for A and plugging in the = |50.000"5- = 220m/s (£15.45)

numbers, we get 1=1.2 km

Central wire
{serves as a pivot} .

line under tension

Figure E15.10

Note that the units do work out correctly!

A schematic diagram indicating the construction of a certain wave machine. The square metai rods can
rotate about the central wire, but the two stretched fishing lines on sither side of the central wire try to
keep the rods level. How fast do waves move on this wave machine? (See problem E15R.3.)




